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ABSTRACT

Propagation of electromagnetic energy through the atmosphere is a difficult task

because of temperature fluctuations and index-of-refraction inhomogeneities which de-
grade the beam's coherence. Understanding this phenomena is of practical importance

for optical systems.

This thesis presents an analytical numerical technique which simulates the effects

of atmospheric turbulence. The extended Huygens-Fresnel principle was used to siniu-

late wave propagation in a two-dimensional randomly varying medium, which is repres-
ented by thin, filtered, Gaussian phase screens. The wave optics code implements both

Fresnel and Fraunhofer propagation. by employing the fast Fourier transform (FIT)

algorithm. The analytical spatial coherence length, p0  and rio:malized intensity vari-

ance, c&i'l, of the perturbed electric field, were examined. Results support the concept

of intensity saturation for weak scattering cases, however, differences in the values of the

thcorc:ical and analytical spatial coherence lengths, occurred.
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1. INTRODUCTION

Atmospheric turbulence degrades the coherence of electromagnetic energy propa-

gating through the atmosphere. The refractive-index inhomogencitics associated with

the turbulent atmosphere induce phase and intensity perturbations across the wavefront.

Understanding the propagation and scattering of optical waves in random media, is es-

sential for atmospheric laser beam propagation and imaging systems.

This thesis models the propagation through a random media by means of the ex-

tended Htuvgens-Fresnel principle. A two-dimensional, thin. Gaussian phase screen re-
presents the randomly varying medium. This wave optics propagation code employs the

fast Fourier transform (FFT) algorithm in both Fresnel and Fraunhofer forms of prop-

agation. The Fresnel region incorporates two forms of the diffraction integral, the

transfer function form for "near field" distances, and the convolution orim for "Tar field"

regions.

Previously, numerically intensive simulations of this type required large. super-

computer systems. lowever. these computations were performed on a compact.,

desktop computer system.

The models accuracy was assessed by comparing computer values of the spatial

coherence length. P, . with values obtained from the analytical mutual coherence func-

tion (NI C Uv. Additionally, the concept of intensity variance saturation was examined for

a single phase screen in the Fraunhofer approximation. The normalized intensity vani-

Z '. P' ..... es a saturaion value as':mptotically for increasing values of the

index-of-ref'raction structure parameter. C. Theoretikal calculations suggest saturation

for multiple scattering. however. the-v say nothing about a single phase screen realiza-
tion. This thesis provides results which support saturation effects for single scattering

cases.



II. BACKGROUND

A. STATISTICAL DESCRIPTION OF TURBULENCE

1. Random Variables
Maintaining the coherence of an electromagnetic wave propagating through the

atmosphere. requires an understanding of the effects imposed on the wave by the tur-

bulent medium. The fundamental characteristic of atmospheric turbulence is its ran-
donmess. which must be described statistically. In addition to statistical quantities,

further assumptions must be made of atmospheric turbulence. These include the con-
cepts of stationaritv. homogeneity and isotropy. Stationaritv implies that random

processes are time independent. Ilomogeneity assumes invariance under a Gallican
transformation of coordinates, while isotropic variables are invariant with respect to

coordinate rotations. [Ref. 11 .\lathematically. these two assumptions imply that the
statistics at two points T, and T2 depend only on the difliercnce. r, -

2. Local Homogeneitv and Isotropy

In general, atmospheric random variables do not obey the assumptions of
stationarity, homogeneity, and isotropy. IHowever. Tatarski [Ref. 21 introduces the

concept of -local" homogeneous and isotropic random variablcs. This conceplt reuires
homogeneity and isotropy vithin a localized region of size L0, the outer scale length.
[urthermore, the difluclties associated with nontationar\ random variabhc,. are re-
moved bv considering random fiels with stationary first increments [Ref 21. 1 atarki s

method applies to a nonstationary random function whose mean varies slowly with tiMe.
by considering the difference of the function at two different locations. "1he slow fuac-

tional chainges do not alf-ct the value of this difference.
3. Structure Functions

Tatarski introduces the structure function

Dr(7 2 - = <If,'2) -J(Fq )1>, (1)

a tensor that is the difference between two quantities. Some important aspects of the

structure function are; that its general form is valid for any variable, and <- > denotes
an ensemble averace taken over all possible point pairs T, . r, Assuming homogeneity

and isotropy, the vector dependence reduces to the magnitude r2  2 - FIT , and the

structure function becomes

, i l I I I I2



Kolmo,.z ov shiowed through dimensional analysis. a simple power law dependenice of-

equation (2). over a limited interval called the Inertial subrarice. as

DI(r) = CP 21  0Sj

Tatarski introduces the concept of "passive additives". which are quantities independent

or position in the vector field. and do not directly influence thle dynamics of thle turbulent

medium. Temperature is a passive additive and has a structure function of the form

D70r) = r

As Ionc as r remains within the inertial subrange. temperature is approximated aIS a

paIssive additive, aind equaI~tion (4) is valid. Likewisec the index-of-refraction is a passive

additive with a Structure funiction"

Since the index of' ref"raction denson the density of' the atmosphere. 1), and P., are

rel;,ted_ by

4. Coivariance. Pmier Spectral Densities

II add.ition to the Structure trunction. other characteristics of' random processes

inc-ludec the covar-IanIL (Or cor~relaltion ). and Power Spectral D~ensities. It Is the intere-

aion ,hip of thc~e three- quanitities whiich provide a useFul method For analyzing ano

prLoScs. The covarIdince be)twVeen two random variables S and T can be expressed as

B_ T= <1 Flr,) - <T(r-)>IS(r,J - <S(r,)>j>. (7)

HIowever. more freqjuently' it IS the autocovarinLc function

= ?iT ~ ) < 7"11 )>)! "(1) - < Br)(S)

which is needed. Fuithiernwwre. if' T is homogeneous and <7F> = 0 is assumed, then

c~jUtie S ilmplifies t0



Combining this relation and equation (2). gives an expression for the relationship be-

tween the structure function and covariance function as

Dir) = 2[BT-7(0) - BTlr)]. (10)

In one dimension the covariance function and the power spectral density are transform

pairs given by

1" )= e ~~r (1]

and

13r) = . _ ':'I. (12)

t1sinc :h1C fact tht B(r is an even function and substituting equation (12) into equation

D(r= 2J [1 - cosKr)II (K:dk. (13)

Tatarslki devcl,, ps an expression for the one-dimensional Kolmogorov spectral density.
given, by

1I(K) = 0 . .'4C 2K- 5 • 3.1)

Discussion to this point has been of one-dimensional random processes, how-

ever these concepts are applicable to three-dimensional cases. Analogous to equation

(IV. Tatarski dcflncs the three-dimensional power spectral densitx as

4



c()= J__ _ j e. 1( ,)d ',

and similarly, the correlation function is

B(F) e f{ e ()d 3 T. (16)

Using the relation

-1 dI'(K) (17)

the three-dimensional Kolmogorov power spectral density becomes

(1)(K) = 0.-33QK's11 !3

B. EMI PROPAGATION THROUGH TURBULENCE

1. Wave Equation

Based upon Tatarski. Clifford [Ref. 3] develops theoretical results of line-of-sight

propagation through the atmosphere. directly from Maxwell's equations. Assuming zero

conductivity, and unit magnetic permeability in the atmosphere, as well as, a sinusoidal

time dependent electromagnetic field. Maxwell's four equations. in Gaussian units, take

the form

v 1t = 0, (19)

VxE = ik-T7, (20)

Vx-J -(21)

V. (n4E) = 0. (22)

Taking the curl of equation (20), and substituting it into equation (21). gives

-vT + v(v• = . (23)

- aI III I



Rewriting equation (22) in the form

- •Vn 2 + n2V. E =0, (24)

and substituting it into equation (23). yields the vector form of the wave equation

V2 E + k2n 2 - + 2V(E. V log n) = 0. (25)

The third term of equation (25) describes the change in polarization of a propagating

electromagnetic wave. This term is negligible as long as the wavelength is small com-

pared to the refractive inhomogeneities. Thus equation (25) reduces to

V 2 E+ k 2n 2 E = O. (26)

Equation (26) is the vector form of the wave equation describing propagation through

the turbulent atmosphere. The difficulty in solving this equation lies in the second term

containing the random variable n. Various methods are available for obtaining solutions

to equation (26), each of which relics on several critical approximations. Strohbelin

[Ref. 4] lists these approximations as:

1. Negligible depolarization effects.

2. Negligible back-scatterinz.

3. Use of the parabolic approximation to the wave equation.

4. Turbulence is uncorrelated in the diiection of propagation.

2. The Method of Small Perturbations-Born Approximation

Both Tatarski [Ref. 2] and Cliflord [Ref 3], solve the wave equation in a turbu-

lent atmosphere using the method of small perturbations, which is equivalent to the

Born approximation. This method expands the electric field into a series of' dccrca,-,'i

amplitudes, and the refractive index into a power series in the form

E= Ec + E, + .... (27)

n +=l+n,+ ..... (2S)

Substituting these into equation (26) and equating same order terms, results in two

equations

V La + k 2 i

6



V2 E, + k 2E + 2k 2nE 0. (3)

where terms of order n? and higher are ignored. Assuming. as Tatarski does. that the

unperturbed field is a plane wave propagating in the z-direction represented as

E, = exp[ikz] , equation (30) becomes
222 2 ikz

V2E, + k2E, =-2k le, (,1)

an inhomogeneous partial differential equation with constant coefficients. Its solution

is the convolution of a plane wave Green's function with the source term, or inhomo-

geneous term, given by

E() l,13 exp]i7 - F [2-(F') exp(ikz')]. (32)

3. The Method of Smooth Perturbations-Rytov Approximation

In addition to the Born approximation. Tatarski develops the Rvtov approxi-

mation which assumes a solution to equation (70) ofthe form

E = exp(t') = exp(X 4- iS). 133)

or simply

E= A exp(iS), (3-)

where .\ is the amplitude given by .1 = exp X . Applying equation (33) to equation (30)

and dividing by . yiClds the Rytov solUtion given by.

V E + k2 ,,(r) = V log E (V log E)- + k'n'(r). (35)

Tatarski Further shows that both methods of approximation are equivalent.

C. HUYGENS-FRESNEL THEORY

As we have seen. the theories of Tatarski and Clifford use the differential equation

approach to solve the problem of' propagation through a turbulent medium. I lowever,

Lutonirski and Yura [Ref. 5]. approach this problem in terms of integral equations

which use an extended l luvgens-Fresnel theory. This technique ik equivalent to a dif-

fe\rential equation approZ,., but it is easier to integrate and simulate usine l:TT tech-



niques. Lutomirski and Yura, develop an extended lluygens-Fresnel theory by

introducing a random phase term for turbulence in the Huygens-Fresnel integral which

is developed in standard optics texts like [Ref. 6]. This additional phase perturbation

takes the form of the Rytov approximaLion. e" . The extended Huygens-Fresnel integral

is.

E(F) ---if e(ik IF - T-1) r.,"t( )d 271 (6
' -r E(,")ej( - ,. (36)

In the Geometrical optics limit, Fermat's Principle is. t--,kfn,(z)dz. With a power series

expansion of ev'. equation (36) reduces to the Green's function solution of Tatarski and

Clifford given in equation (32).

Recently, .Martin and Flatt6 [Ref. 71 presented an atmospheric turbulence algorithm

which uses the differential equation approach that has as a solution, the extended

Il iuygens-Fresnel integral. A filtered random Gaussian phase screen introduces the

phase perturbations while the algorithm's path integral method, incorporates a multi-

screen transfer function form of Fresnel propagation.

D. MUTUAL COHERENCE FUNCTION

The effects of atmospheric turbulence can be expressed in terms of two functions.

the Mutual Coherence Function (MCF) and the Modulation Transfer Function (YITF).

Lutoniirski and Yura [Ref. 5] derive the first concept by considering the average intensity

<1( r)> <1=! <T)E(F)> . of equation (36). What results is an average intensity which is

a product of the autocovariance of the aperture and the atmospheric YMCF. The atmo-

spheric MCF term has the Rytov form < exp ' + ''")> where the 4" refers to the

complex phase factor at the r, coordinate and IF ' ' corresponds to the r, coordinate. '[his

term is log-normally distributed, as long as, '-' is composed of Gaussian variables. Using

this fact and results in Fried's work [Ref. 8 ], the atmospheric MCF was written in terms

of the wave structure function D(p ). given by

<e "~'"> = exp[ -D(p) (3 7)

where D(p) = Dx(p) + Ds(p). Lutomirski and Yura apply the structure function for a

plane wave.

-- ---. =. .= =,=, ..,,.. .n~n mu nnnunn nl~ Iniml~~ m



(L
D(p)) 2.9 1 k'p C' cw.(z , (

to equation (37) which can be written as,

<C"41.+T1") >= MCF(p)= exp[-(- o- 513 (39)

where p, , the lateral cohernece length, given by

P, = 11.46k Cn(z)-z ] ',1 (40)

where k = 2 and C, is the index of refraction structure parameter along the optical

path length L, represents the distance where the spatial coherence of the wave drops to

c-1 point of the NICE. [Ref. 8

E. MODULATION TRANSFER FUNCTION

Lutomirski and Yura's concept o NICF is closely related to the NMTF of Fried's

[Ree. S]. The NICF and NITF are in fact the same function but expressed in terms of

dillerent variables. The ICF is measured in the coordinates of the propagation field

and has dimensions of dstance, while the MTF, is measured in the image plane and has
the dimensions of spatial frequency. Both are equivalent under a transformation be-

tween the two planes by letting p-,,.Rf where R. is the focal length of the optics and fis

the spatial frequency. This transformation is valid under the Wiener-Khintchine theo-

rem since the lens Fourier transforms the incident electric field at the aperture to the

image plane. Fried's expression for the atmospheric long term MTF is

[TFj) = exp -3.44( -L )5/, (41)

where r0 = 2. 1 p0.

In calculating the MTF, two distinct cases exist. These are a short term and long
terni MTF. Tlhe short term exposure describes the evaluation of the wavefront in sufli-

cicntlv short time intervals such that the turbulence appears frozen. The lone term

9



MTF, is a single long time integrated exposure, taking into account every turbulence

configuration. This thesis focuses on the method prescribed by the short term . I.

[Ref. 8]

The analytic distinction between the two cases lies in the manner in which the

wavefront distortions are handled. Specifically, the distortion attributed to a random tilt

of the wavefront. Tilt results from the varying phase fluctuations across the aperture

which accumulate along the optical propagation path. These fluctuations produce im-

age motion in the focal plane of the receiver. For a very short exposure, the tilt is ex-

tracted, by fitting a mean square two-dimensional flat plane to the electric field and

rotating it through an angle so that the mean wavefront is normal to the direction of

propagation. This introduces a phase shift, resulting in the displacement of each curve

about the optical axis. Fried's [Ref. 8] development of this theory suggests a higher

MITF at all spatial frequencies for the short term MTF. The short-exposure MTF for

near-field and far-field cases is respectively given by

< 0c)>f-= '() ex[ -3.44["f 1 - i/3f 1 ;i3

where -r, is the NMTI " of a dif'raction-limited lens. and the exponential term corresponds

to the atmospheric NITF. These equations predict a near field short term MITF that

start at one. declines to a minimum, then increases to unity, at the optical cut off fre-

quency. Figure I illustrates this phenomena.

F. DIFFRACTION INTEGRAL

This section presents the analytical work concerned with the development of my

propagation algorithms. It begins by illustrating the approximations that were used to

manipulate the diffraction integral and then proceeds with the analysis required to

transform the solution of the Helmholtz equation into two forms of the Huygens-Fresnel

principle. The two forms are, first, a convolution form suited for long distance propa-

gation and second, as a transfer function form for short distance propagation. Some

initial assumptions made by Roberts jRef. 9] include the following:

1. Light propagates in the k direction.

2. The wave amplitude is known in the xy-plane at z = 0.

10
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Figure 1. Short Term Mutual Coherence Function for an 3 x S Subaperture.
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3. Polarization effects are negligible.

4. The electric field amplitude is a scalar function V(r,z).

Following Roberts. the analy'sis begins with the lluygens-Fresnel integral for the

propagation of light waves given as

(FZ)=- Ja-~ 0) ex[ " /Z2 + IT - TI2] (43)

where ). is the wavelength of light and 7 is a vector in the aperture plane. F is a vector

in the image plane, and z is the propagation direction. From the Fresnel approximation

where, r < < z and p < < z, factor z2 from the square root and expand by a binomial

expansion. Equation (43) becomes

V(L f.=- dp-( 0) exp N/1 I'"- •
S-- 2-n _ 2) ] ,

- r. ) V,/ L, ) exp I 1 - "- I Z ()

-i -2,-,i:~ -1, 0) exp(- 7 l)

-. =--exp(, J 1"ip

.Z ,. AZ

Since the exponential phase factor outside of the integral does not affect intensity

measurements. equation (44) is

F(F. z)= _ fd C.Vr ,) exp[ T o) e. (45)

Expanding the quadratic term gives.

1'(, z)= faji 1'(T, 0) exp [r-27. p2],

exp .- r2 dT'(T, 0) exp h 21 exp 2 .]Zz ;Z I )Z 1.1 Z II

This is the convolution form of the Fresnel integral. which is equivalent to the

Fraunhofer integral except for the quadratic phase factor in the integral.

To obtain the transfer function form. the analysis begins with denoting 1-(f.z) as the

Fourier transform of Vr.z) given by

12



(, z) = f fdF exp( -2,-rif 7) (T, z), (47)

where V(7, z) is given in equation (45). Interchanging the order of integration vields

--'if, z -4 (7, O)jdFexp(-2r rif")exp[ 4 F ] (4S)

Next, a change of variables is made where

7' = 7 - (49)

Substituting this into equation (48) gives the following equation

., : f =. T -o)f d7' exp[ -27ir/. (7 + -)] exp -- , .AZ ZZ
-- iff [ i r2]. (50)

ll- ('(. 0) exp( -2 .,,'& ' T).) d7' exp( -2.-f]. F') ep 2 (

The r ' integral is replaced with its Gaussian transform pair.

) .eXp(-i):C,(1

eiving

J = exp( -i'z)J I'j e, V(T-, 0) cxp( -27,f. . (52)

The inverse Fourier transform of equation (52) yields

V(;, z) fd" exp(2it. 7) exp( -i~zr.zJ) fdI'(T), 0) exp' -27Z.). (53)

This expression is the transfer function form of the diflfaction integral, which is equiv-

alent to the solution of the differential equation approach used by 'Martin and llatte

[Ref. 7]. Reviewing the form of equations (46) and (53). the need for two equations de-
scribing different propagations. is obvious. In one instance, the propagation distance z

enters in the denominator of the exponential term. It is at long distances that the ex-

ponential term varies slowly. On the other hand, equation (53) is suited for short

13



propazatrnn distances, as z enters into the numerator of the exponential for slow vari-

ations in this clasc.



Ill. NUMERICAL SIMULATION MODEL

This numerical simulation. modeled wave optics propagation of an electromagnetic

wave through a random medium, represented by a two- dimensional Gaussian phase

screens. Techniques in this model required certain "tools" and their testing. These
"tools" included a need for a reliable random number generator, used in generating the

random phase screens. and an efficient two-dimensional FFT, used in approximating the

diffraction integrals. But first, a discussion of the experimental arrangement is needed.

A. EXPERIMENTAL ARRANGEMENT

Due to the extensive numerical calculations in this simulation, a Compaq deskpra

S03S6-20 computer was used. It features a 64 megabyte hard drive and 16 megabytes

of memory. In addition to the 20-MI-lz 803S7 coprocessor. a Weitek 1167 math

coprocessor was added to enhance execution speed. The 32 bit Fortran-386 compiler

was from Silicon Valley Softwvare (SVS) and uses Phar Lap Software to extend the op-

erating system beyond one megabyte. The math and graphics packages were produced

by Scitech Scientific. The Compaq has a 6-40 x -4S0 pixel VGA graphics monitor. Both

the HI1' Laser Jet Series If and Panasonic KX-P1092i multi-mode printers were used in

this arrangement.

B. COMPUTER PRELIMINARIES

1. Random number generator

The main purpose of a computer simulation is to approximate natural phe-

nomena. To make things realistic, random number sequences were used to introduce

stochastic variations. One nikht ask, what minimal criteria should a particular random

number generator satisfy? Certainly the most important criterion is that the sequence

of numbers is sufficiently random. Other criteria are uniformity, reproducibility, mini-

mum memory, fast, non-repeating, and statistically independent.

The more difficult characteristic to satisfy is statistical independence. Thus a

series of tests were needed to provide a quantitative measure of the generator's per-

formance. There are two kinds of statistical tests: empirical tests and theoretical tests.

Empirical tests focus on how the computer manipulates groups of numbers from the

sequence and evalua'tes certain statistical quantities. Perhaps the best known of all sta-
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tistical tests are the "Chi-Square" tests. Theoretical tests, on the other hand. establish

characteristics of a sequence using methods based on recurrence rules. [Reft 10]

f-or the purpose of this simulation, only empirical tests were applied to the

SVS-Fortran random number generator called Ran"Iy . The following five tests were

considered:

1. Frequency Test. This test determines whether or not the sequence of numbers are
unifor-iy distributed as U(O.1).

2. Serial Test. This test is an extension of the frequency test to two dimensions or
matrix form.

3. Laged-Product Test. This test checks for correlations between successive numbers
over a given lag period.

4. Run Tests:

a. Runs up and down. This tests for long increasing and decreasing sequences of
numbers.

b. Runs above and below the mean. This tests for long sequences with values
consistentl, abo\ e or below the mean.

The results of the five tests arc provided in Appendix A. O1 these five tests, the

Laee,ed-Product and Runt Tests are the most critical when simulating atmospheric tur-

bulence. These three tests deternine whether or not correlation is introduced from the

random number generator which produces erroneous results in the simulation. The

SVS-Forzran random number gencrator moet the test criteria and proved to be o,.e of the

better _cnerazors. I lov,cver. this generator has one sienificant draw back. The random,

seq uences bein at one of two different values depending on whether the seed value is

positive or ncca:iavc. Thus it is critical that the random numbers be called continuously

in a loop to avoid restarting the sequence. thereby introducing unwanted correlation.

2. Fast Fourier Transform

The most repeatedly used algorithm throughout the numerical sinulationl was

the fast fourier transform. Therefore. it was necessary to use the most eflicient algorithm

available. The Scitech Scientific math package provided several options, with subrot'::ne

IH T2C . best suited for this numerical simulation. This subroutine uses a complex array

input. The othecr [FT considered was a routine coded by Dr. Walters which he received

in a demonstration package provided by Infotck. This FFT utilizes real arrays and will

henceforth be refered to as subroutine FrT.

Each subroutine was timed for various configurations. Specific tining results

are contained in Appendix B. Some general results, however. are that subi outine
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FFT2C was faster for one-dimensional cases, with subroutine FFT faster for the two-

dimensional cases. The decline in efficiency of FFT2C can be attributed to the extra

coding required to convert between real arrays and complex arrays. Subroutine FFT

was selected over FFT2C since the simulation utilized the two-dimensional form of the

FFT.

Other techniques which were employed to increase the efficiency included in-

stalling a Weitek coprocessor in the Compaq. This reduced the processing time to ap-

proximately one-third that of the original time. The use of common blocks vice

dimension statements further decreased processing time by 5'0. Finally, a portion of the

FFT algorithm was modified from wini = sin(ang) , to wimn = I 1 - wre2 , with a negli-

gible decline in efliciency by 0.01.

Because of the discrete nature of the simulation, there exists problems and lim-

itations associated with implementating the FFT. One such problem was that of clas-

sical edgec diffraction associated with the phase or amplitude discontinuities at the edges

of the finite screen. As the propagation distance z increases, the edge diffraction spreads

toward the center of the screen making more and more of the diffraction pattern erro-

neous. Buckley IRef' Ill defines the distance from the ends of the screens where the edge

diffraction is important as

D _-) 2,, + "-: -- 4

where z is the piopagation distance and a. is tile root mean square phase deviation im-

posed on the wa\e by the screen. The severity of edge effects, however, is reduced by

the aliasing introduced in the FIT implcmentation. Aliasing transforms tile linear

screen to a "circular" one with tile last point associated with the first. This results in a

continuity of phase and amplitude at the edges of the screen [ Rcf. 1 I].

The most important limitation was the finite spatial range imposed by the

maximum available grid siue. This places a constraint on the axailable range of fre-

quencie, used in the ITT from the lowest given by f I.= IL . to the highest.

1= n2L. where 1. is the grid length and n is the number of grid points. Figure 3 on

page 20 illustrates this setup. The ITT provides a least squares fit of sine and cosine

fuctions to the perturbed wavefront phases. I lowever, this method prevents an accurate

representation of the wavefront at low frequencies for a Kohnogorov K- power spec-

trum. To alleviate this problem. a subaperture was superimposed at the center of the

grid. The subaperture helps low frequencies. which contain a large portion of the am-
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plitude, but hurts the high frequencies by limiting the inner scale. There exists some high

frequency edge effects, however, these are minimal.

C. PROCEDURE

Figure 2 provides a summary of the coding contained in Appendix C. This con-

ceptual diagram illustrates an overview of the procedural steps of the Fraunhofer prop-

acation algorithm.

1. Input Parameters

Since this step is straightforward, extensive discussion is not required. However,

it is important to note that the input parameters were both fixed and variable. The array

size and filter value were fixed quantities. but the subaperture size, seed value, 0, value.

and propagation distance, took on different values. The actual variable names are doc-

umented at the beginning of the code.

2. Aperture Mutual Coherence Function

The second step in this procedure calculates the aperture MCF. Subroutine

1IC t does . In this subroutine the initial wavefront was represented in the computer

as an L x L square array of complex numbers. Centered within this complex electric

field was a subaperture. The initial complex electric field had a value of zero. every-

where, except for the real part of the subaperture, which had the value of one.

Fie 're 3 illustrates this. With the electric field created, it was direct Fourier trnmsformcd

(DFT) by subroutine DTIFT . The intensity of the electric field was calculated, and

then in-ersc Fourier transfbrmed (lET). yielding the aperture M CF.

3. Planar Electric Field

The complex electric field was created by the same method presclibcd in sub-

routine V/CF . It is important to realize that the concept of aperture size was used in

two ways. One way corresponds to the simulated aperture while the other pertains to

an aperture with physical dimensions. The simulated aperture is actually a matrix or

grid which directly reflects the dimensioning size. For example, the simulated I. x L

complex electric field was actually a two-dimensional matrix corresponding to a 256 x

256 two-dimensional array. From the input parameters. the simulated subaperture takes

on grid sizes ranging from an 8 x 8 to 200 x 200 square matrix.

The second referencing to an aperture refers to an aperture with actual physical

units. The physical subaperture was assigned a value of 0.3125 meters, which remains

fixed recardless of the simulated subaperture size. The length L of the complex electric
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Figure 2. Conceptual Diagram of the Simulation Coding.
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field, on the other hand, had variable physical lengths depending on the simulated

supaperture size. The physical value of L was calculated from

L = x 'It' [meters], (55)isi

where m is the physical subaperture length in meters, nr is the integer value of the array

dimensioning, and isize is the integer value for the simulated subaperture.

4. Phase Screens

a. Generation

Phase screens were created in subroutine GGA US by constructing a L x L

matrix of Gaussian distributed random numbers. Each position was assigned an inde-

pendent random number n, thereby, requiring n2 random numbers. Since the

SVS-Fortran random number generator was uniformly distributed, an algorithm pro-

vided by Knuth [Ref. 10] transformed the distribution into a Gaussian one. Two inde-

pendent, two-dimensional real arrays called p/laser and phasei were created, which

represent the real and imaginary components of a two-dimensional complex phase
screen. In this algorithm, the imaginary part of the phase screen was set to zero.

The domain in which the phase screens are created is arbitrary, however,

filtering was done in the Fourier plane. Creating the phase screen in frequency space

vice real space. reduces the requirement for an additional FFT when transforming from

real space to frequency space. Martin and Flatte [Ref. 7] proposed this method, but it

creates difficulties in absolute normalization. Further discussion is presented in Chapter

four. This simulation. on the other hand. Generated the random Gaussian phase screen

in real space. This in turn was DFT'd to frequency space where the complex phase

screen was filtered and then the filtered phase screen was IFT'd.
b. Filteringe

Phase screens were filtered to obtain the correct power law form. The fil-

tering function used in subroutine FLTR was,

4)o(K) = 2zk 2 bx(Dn. (56)

where 6, is the slab thichness and FD, = 0.033CK-" 3 , which gives the relationship be-
tween the phase spectrum and refractive-index spectrum [Ref 2. pp. 101-102.1. Filtering

was accomplished by nmultipiying each phase screen spectrum by the square root of

equation (56). The correct filtering method requires circular frequency filtering instead

of a linear one, because of two-dimensional isotropy. The correct form is
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=K;+ K. , which is radial everywhere except at the origin, where it is zero [Ref. 121.

This was reflected in the simulation by setting the position (1.1) equal to zero in each

two-dimensional real array which makes up the complex phase screen.

It is inportant to realize that although the filtering concept is simple and

straightforward. the actual implementation is not. The difficulty arises from the sym-

metry properties of the digitally filtered phase screen.

A one-dimensional case offers a simple illustration of this concept. The

FFT of a complex function which contains only real components, results in a symmetric

function in frequency space about the Nyquist frequency For the real components, and

an anti-symmetric function for the imaginaries. With these symmetries present in the

frequency domain, the correct implementation of the filtering is to minick these sym-

metries. Thus a "folding" technique about the Nyquist frequency was required. How-

ever. when this concept was extended to a two-dimensional case. as in the phase screen

in the simulation, the synmetries imposed by the FFT, were no longer apparent in the

frequency domain. To simplify the symmetry requirements, a real phase screen was

used. The real and imaginary spectral components were filtered by folding about the

N:-uist frequency. It was suggested by both Brigham [Ref. 131 and Martin and llatt

that a complex phase screen containing both real and imaginary components. yields two

entirc!y distinct phase screens. I However. nothing was prosidcd to support this h poth-

esis.

Another important consequence of filtering resides in the units. The phase

screens were filtered in K units, but the IFT algorithm operates in frequency units.

There!ore. it Was necessary to make a change of' variables prior to applying the I UT.

'rhe relationship used for the change of variables is iK = v

The paper by Martin and Flatt [Ref' 7]. specifies an additional normaliza-
2-

tion factor of A- in equation (56). where A, = and where N is the number of grid

points and A is the sampling interval. Martin and Flatt provided no explanation for

the additional A.- in the filtering. It was not included in the filtering code.

•. Imnplementation

After the filtered phase screen was IFT'd into real space, it was introduced into

the code as a phase screen and multiplied with the electric field. The array phaser, which

contains the desired phase field, takes the form of the Rytov approximation, e- . in the

extended I luygens-Fresenel integral. This form assumes that only phase perturbations

and not amplitude variations, occur.



6. Propagation Methods

As indicated in previous sections, the Huygens-Fresnel technique was used to
simulate the propagation of light. This was accomplished by applying the FFT to the

perturbed electric field. Both the "far-field" and "near-field" propagation methods were

considered.

a. Fraunhofer

Of the two different propagation methods, the single screen Fraunhofer
propagation is by far the simplest technique to implement and the one implemented in
this thesis. The uniform coherent plane wave at the aperture was FFT'd yielding the

desired diffraction pattern. Looking more closely, one can see that under certain cir-

cumstances, Fraunhofer propagation is just a special case of the long distance convo-
lution form of Fresnel propagation given bx' equation (46.). There exists two situations

when this occurs. One is a "far-field" case for large distances, where the point of obser-
vation is at infinity. The other case. is when a spherical curvature is placed on the wave

at the aperture. This curvature cancels the quadratic phase factor in the Fresnel form,

at the focal point.

Both Fresnel and Fraunhofer algorithms were needed for propagation. It
was essential to verift and validate each case bef'ore building on the pre-existing codes.

The Fraunhofer algorithm provided the basis of this simulation. Since the Fraunhofer

diffraction pattern is well-known, it provided a means to verify the existing code by
comparing the simulated diffraction pattern with theoretical results. Figure 4 and Fig-
ure 5 illustrate one threc-dimenional quadrant of the diffraction pattern of an unper-

turbed electric field. For two different subaperture sizes. While Figure 6 illustrates one
three-dinensional quadrant of a perturbed electric field diffraction pattern for a 16 x 16

subaperture.

b. Fresnei

Although the Fresnel propagation forms were implemented but not tested

in this thesis, discussion is warranted since multi-screen Fresnel propagation is predom-
inantlv used in thermal blooming and multiple scattering scenarios. Propagation

through the turbulent boundary layer also requires Fresnel propagation codes. Two

different forms are used for Fresnel propagation. which apply a straightforward FFT to
evaluate them. These two forms however, do not allow for a variable receiving array
size. In addition, choosing the correct number of sample points is essential. An effective

approach used to resolve these problems is the Fresnel number.
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The Fresnel number is

ArAp 7-

where A r is the receiving aperture size, A p is the transmitting aperture size. ). is the
wavelength of light, and z is the propagation distance. Implementation of the correct
Fresnel form depends on the Fresnel number. When the Fresnel number is smaller than
the number of grid points in the field length, that is, A, N, the long distance propa-
gation algorithm is used. Conversely, when N A.' , the short distance code is

implemented.[Ref. 14 1
The long distance propagation code uses the convolution form of the

diffraction integral. Implementation requires placing a curvature on the electric field
wavefront at the aperture. The subroutine called quadl . does this. Muliplying the
phase screen with the electric field, gives a perturbed electric field that propagates the
entire distance by means of one IFT. In the Fourier plane, the quadratic phase factor

called quad2 scales the electric field.
The transfer function form, on the other hand, is suited for short distances.

In this case, the entire propagation distance is divided into equally spaced slabs. Two
FFT's are required to propagate the distance of each slab. This is accomplished by the

following method:

1. Mesh the electric field and phae screen.

2. Apply the direct FFT.

3. Multiply the field by the propagation transfer function subroutine called trns- .

4. Apply the inver-e FFT.

This procedure is repeated for each phase screen until the observing plane is reached.

[Ref. 71
Both forms of Fresnel propagation were included in the simulation code

contained in Appendix C, however, neither form of Fresnel propagation was exercised.

7. Atmospheric Mutual Coherence Function

The final step in this simulation calculated the atmospheric MCF. The same
procedure used to calculate the aperture NICF, was applied to the perturbed electric
field, with one exception. The difference is that division of the composite atmospheric-
optical MCF by the aperture MCF. gives the atmospheric MCF.
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IV. RESULTS

The main objectives of this thesis were to demonstrate that the simulation gives rc-

sults that provide insight to weak scattering wave propagation and examine the accuracy

of the simulation code. The limitations imposed by the computer mechanics and the

actual method of implementing turbulence theory are discussed. Specific areas of inter-

est include the filter function, MCF, and saturation effects.

A. FILTERING

As previously mentioned in chapter three, Martin and Flatt proposed a very dif-

ferent approach to creating the random Gaussian phase screen. Their method suggests

creating the phase screen in frequency space, vice real space. to reduce the required

number of FlT's from two to one. Since the domain in which the phase screen is gen-

erated. is arbitrary, this approach seems plausible. I lowever. this method proved to be

awkward. As the subaperture size was successively doubled, it was necessary to increase

the strength of turbulence, Q, by a factor of ten each time. in order to produce the

identical levcl of' turbulence as in the previous phase screen. Additionally. since the

phase screen was created in frequency space. and no symmetries were present. the fil-

tering tecmique did not reflect any folding about the Nyquist frequency. It is not clear

that aliasing was accounted for in the Martin and lFlazt algorithm. I lence. the IF of

the phase screen appears to result in a statisticall incorrect phase screen. Additionally.

It is not clear how. with one FFT. Martin and Flatt handled the 2r and 1 N normal-

ization requirements. With a round trip of Ff's, the normalization problems are au-

tornaticallv handled. The weakly filtered phase screen, in turn. led to MCF curses which

grossly overestiiiatcd the coherence length. p,. These problems obtained from .Martin

and Flatt ' s approach to simulating turbulence led to the current coding which created

one phase screen in real space and applied a folding about the Nyquist frequency. in the

filterin,. to account for the synmetries introduced by the IFT's.

K olmogorov theory of atmospheric turbulence predicts that the graph of the phase

screen power spectral density versus K yield a slope of -11/3. Figure 7 shows that

equation (56) produced a filtered phase screen that reflects the -I 1,3 slope, as well as,

the correct folding technique. Identical slopes were expected for all subapertures. as well

as. all possible angles which reflect the circula," filtering. Other subaperture profiles show

a consistent slope vaLue of"-113. Figure S corresponds to a 32 x 32 subaperture at a



45 degree angle while Figure 9 is representative of a 64 x 6.4 subaperture at a 90 degree

angle. Isotropy is apparent in that the circular filtering was implemented correctly

within the ejoor introduced by the randomness in the screen aTnd the ability to linearly

fit a line through the data points.

B. MCF

The MCF of the electric field provides one method of analyzing the accuracy of the

simulation. To verify that the MCF was correctly computed, the aperture MCF of an

unperturbed electric field was calculated. This was easily accomplished since the image

intensity and aperture MCF are transform pairs and are analytical for simple square and

circular apertures. The aperture MCF is just the autocorrelation of the aperture func-

tion which is evaluated by calculating the area of overlap of two identical apertures as

they are moved laterally apart. For a square subaperture. the autocorrelation yields the

triangle function. with maximum value of 1.0 and minimum value of 0.0 corresponding

directly to the subaperture size. Figure 10 illustrates the NICF. or autocorrelation. of

an 8 x S and 16 x 16 square subaperture.

The MCF corresponding to the atmospheric turbulence was determined by dividing

the NICF of the perturbed electric field by the aperture MCF. The value of p0. the spa-

tial coherence length, was determined from the turbulence MCE curve. Figure 11 il-

lustrates a simulated P, value of 3.20 m11 for a 64 x 64 subaperture with Q= l=rlO - 13 .

The theoretical vluc calculated from equation (40) yields p_ = 2.-41mm. Although the

64 x 64 subaperturc guve accurate results other subaperture configurations did not.

When (-7 increased, the MCF curves fell off rapidly towards zero for all subapertures.

FiLure 12 illustrates this for a 6-4 x 6-4 subaperture. All subaperture configurations were

run for two difTerenct Q values. The simulated p, values were plotted against the cor-

responding subapertures for each case. Figure 13 reflects the Q = lxl0O- -p, values, and

Figure 14 is for 0, = lxl(h'0 . The desired trend is for the simulated P, values to approach

the theoretical value as the subaperture size increased. This trend is visible in

Figure 13 where C = IxlO-13 and p_ = 2.4mm. However. Figure 14 shows continuously

decreasing p, values past the theoretical value of 9.6mmn. The results of figures thirteen

and fourteen point to a problem that may involve edge effects or aliasing. resulting from

undersampling. The p, values. which were on the order of millimeters, were smaller than

the tens of centimeter distances of the subaperture mesh size.

In an attempt to pinpoint the problem. the simulation code was changed to increase

the number of frequencies in the subaperture by using a 512 x 512 array. The results
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were identical to those for the 256 x 256 dimensioning, within the arithmetic error of the

algorithm. The information provided by the 512 dimensioning was that the inaccuracy

of the code was not due to an inner scale problem, however, a low frequency, outer scale

problem may still exist.

C. SATURATION

The last area of investigation was whether or not the simulation predicts the satu-

ration of intensity for an extended medium modeled by a single phase screen realization.

Saturation is generally considered to be caused by multiple scattering, a scattered wave

interfering with a distorted wave. One wotld expect from the Rytov approximation of

turbulence theory, that saturation will occur even in Fraunhofer propagation. This as-

sumption stems from the representation of turbulence in the form. e' , which has a

magnitude bounded between plus and minus one. Figure 15 illustrates that the nor-

malized intensity variance saturates with increasing turbulence. Theoretically, a nor-

malized variance of one is expected for Rayleigh statistics. HLowever, it is premature to

assume that saturation is inherent in Fraunhofer cases, until the NICE- results are veri-

fied.
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V. CONCLUSIONS AND RECOMMENDATIONS

This thesis simulated the propagation of plane waves through an extended two-
dimensional random media using a single phase screen technique. The atmospheric
turbulence had a Kolmogorov K-1 3 pure power law, while the propagation was strictly
Fraunhofer. Limitations of its applicability were, primarily, the finite spatial range im-
posed by the available grid size. Diffraction patterns, correlation functions and intensity
variance saturation at the observation plane, were investigated.

The results provided by the simulation suggest general agreement with the turbu-
lence theory. Saturation for weak scattering was supported by this model. The MCF
curves, although not completely correct, provided insight to the theory and illustrated
problems which are still present in the current coding. Some specific problems include.
potential errors in the implementation of the filtering technique from edge effects, alias-
ing and inner scale problems. or from incorrect normalization.

Any further rescarch on this topic should begin with resolving the inaccuracies still
present in the simulation coding. Several possible reasons were presented, however, an
error in the filtering of the phase screen seems to be the most likely cause. Further

testing can be conducted on the phase screen, to include calculating the phase screen

variance, as well as. its structure function D.. By comparing the simulated phase screen

with the theoretical structure function for De. this technique will verify whether or not

the sinmulatcd phase screen accurately represents turbulence.

An assumption was made, that aliasing was not a problem, since the problems as-
sociated with undersampling were not apparent. Aliasing can be tested by using finer

grid sizes and observing changes induced by the higher spatial frequencies.

After the coding is working correctly, both the convolution and transfer function

form of Fresnel propagation can be implemented and exercised. In addition, the array
sizes should be modified to incorporate a dimension ofS12 or 1024. Finally, during the

phase screen generation, phasei should be filled with random numbers to give two usable
phase screens. It is not obvious whether two independent phase screens will be

produced. or whether the total energy will be distributed among the two phase screens.

Therefore. testing should be conducted to ensure that each usable phase screen possesses

the correct statistics.
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APPENDIX A. RANDOM NUMBER GENERATOR TEST DATA

The following table provides the statistical results of the five empirical tests run on

the random number generator, Ran(Ij. The X1 values were determined from the Chi-

Square table in Bevington [Ref 15 ].

The results of the Lagged Product test correspond respectively to the theoretical

mean, AT , calculated mean, A , theoretical standard deviation, CT , and calculated
standard deviation, a. A lag of three was tested.

Table 1. RANDOM NUMBER GENERATOR TEST DATA

TEST DEGREES OF 1 X2  PROBABILITYFREED03_

Frequency 9 4.4 88.3%

Serial 20 17. 1 65.0,
Up and Down 8 4.1 84.5)

Above and Below the 12 6.2 90.5%
Mean

TEST 11- JU F

Lagged Product 0.251 0.259 W. 020 (.(12
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APPENDIX B. FFT TIME SERIES DATA

This appendix contains the results of the comparison between the two FFT sub-

routines, FFT2.C and subroutine FET. A function routine called SCNDS, was imple-

mntncd.in the code to providc a,-c,,rate t~nizasurenAents.

Table 2. FFT TIME SERIES DATA __ ______________

COMPUTER SETUP FFT FFT2C

I DIMENSION TIME(sec) TIME(sec)

211 with 2^0-.liz 80387 2.64 2.64
2' ) wih 0-Ilz S(387 25. 54256

21- with 20-M117 S03S7 54. 05 53.4-4

2 DIMENSION TIM E(sec) TIME(Sec)

128 x I> 2 with 2-I-Ilz 803S7 6.S6 7.()S
250 x 256 with 20-M I IL SO. '87 3 1.3 2h

256 x 256 wi'th Weitek I2O 121

256 x 256 with Weitek. and common 11.48 11.56
block

512 x 512 with Weitek and corruon 4).5 4 52. 4
block
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APPENDIX C. SIMULATION CODE

The simulation code contained in this appendix incorporates Fraunhofer and both
forms of Fresnel propagation. This thesis only exercised the Fraunhofer propagation.

C *
C
C THIS CODE PROVIDES A QUALITATIVE VIEW OF BOTH FRAUNHOFER AND
C FRESNEL DIFFRACTION BY OBSERVING THE PERTURBATION IMPOSED ON A
C MONOCHROMATIC PLANE WAVE PROPAGATING THROUGH A TURDULENT
C MEDIUM. THE TURBULENT MEDIUM IS INTRODUCED IN THE FORM OF A
C STOCHASTIC PHASE SCREEN. PROPAGATION OF THE ELECTRIC FIELD IS
C ACCOMPLISHED THROUGH FFT'S.
C

C
C GLOSSARY OF VARIABLE NAMES:
C
C 1. ARRAYS:
C
C RE - ONE DIMENSION REAL ARRAY OF DIMENSION NR, WHICH IS USED TO
C MANIPULATE THE REAL PART OF THE COMPLEX ELECTRIC FIELD IN
C TKE FFT SUBROUTINE. THIS ARRAY IS REPEATEDLY USED THROUGHOUT
C THE CODE.
C
C RIM- ONE DIMENSION REAL ARRAY OF DIMENSION NR, WHICH IS USED
C TO MANIPULATE THE IMAGINARY PART OF THE CCMPLEX ELECTRIC
C FIELD IN THE FFT SUBROUTINE. THIS ARRAY IS REPEATEDLY USED
C THROUGHOUT THE CODE.
C
C FIELDR - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR
C CONTAINING THE REAL PART OF THE COMPLEX ELECTRIC
C FIELD. THIS ARRAY IS REPEATEDLY USED THROUGHOUT THE CODE
C
C FIELDI - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR
C CONTAINING THE IMAGINARY PART OF THE COMPLEX ELECTRIC
C FIELD. THIS ARRAY IS REPEATEDLY USED THROUGHOUT THE CODE
C
C FILL - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR USED AS A
C DUMMY ARRAY IN THE IFT OF THE POWER SPECTRUM WHICH YIELDS
C THE MCF.
C
C FIELDM - TWO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING
C THE MAGNITUDE OF THE PERTURBED ELECTRIC FIELD.
C
C FMCF - TWO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING THE
C INTENSITY OF THE PERTURBED ELECTRIC FIELD. THIS ARRAY IS
C USED IN DETERMINING THE MCF.
C
C FNORM - TO DIMENSION ARRAY OF DIMENSION NR X NR REPRESENTING THE
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C INTENSITY OF THE UNPERTURBED ELECTRIC FIELD. THIS ARRAY
C IS ALSO USED IN DETERMINING THE MCF.
C
C PHASER - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR CONTAINING
C THE REAL PART OF THE RANDOM COMPLEX PHASE SCREEN.
C
C PHASEI - TWO DIMENSION REAL ARRAY OF DIMENSION NR X NR CONTAINING
C THE IMAGINARY PART OF THE RANDOM COMPLEX PHASE SCREEN.
C
C FMAG - ONE DIMENSION SLICE OF THE PERTURBED MCF USED IN THE
C GRAPHICS ROUTINE. REAL ARRAY.
C
C DIST - ONE DIMENSION REAL ARRAY REPRESENTING THE PIXELS
C CORRESPONDING TO THE VALUES IN THE ARRAY FMAG.
C
C VARAIBLES:
C
C NR - DIMENSION OF THE ARRAYS EXACTLY AS SPECIFIED IN THE DIMENSION
C STATEMENTS IN THE CALLING PROGRAM. INPUT INTEGER. INDICE.
C
C N2 - ONE HALF OF NR. INTEGER.
C
C M - POWER OF 2 IN THE DIMENSIONING. USED IN THE FFT SUBROUTINE.
C
C ISIZE - INTEGER VALUE CORRESPONDING TO A PARTICULAR CHOICE FOR AN
C APERTURE SIZE. INPUT VARIABLE.
C
C NSIZE - INTEGER VALUE CORRESPONDING TO THE ACTUAL APERTURE SIZE.
C
C DELMSH - REAL VALUE REPRESENTING THE SAMPLING INTERVAL FOR A
C PARTICULAR APERTURE SIZE.
C
C SEED - REAL INPUT VARIABLE USED TO BEGIN A RANDOM SEQUENCE OF
C NUMBERS FOR THE SUBROUTINE GGAUS.
C
C NYES - INPUT INTEGER VARIABLE WHICH SELECTS WHETHER TURBULENCE IS
C INTRODUCED IN THE CODE.
C
C FILTER - FIXED INPUT VALUE USED IN THE FILTERING FUNCTION. REAL.
C
C CN2 - REAL INPUT VARIABLE REPRESENTING THE INDEX-OF-REFRACTION
C STRUCTURE PARAMETER. DETERMINES THE AMOUNT OF TURBULENCE
C INTRODUCED IN THE FILTERING FUNCTION.
C
C DREC - REAL INPUT VARIABLE REPRESENTING THE RECEIVING FIELD SIZE.
C
C DTRNS - FIXED VALUE FOR THE TRANSMITTING FIELD SIZE. REAL.
C
C Z - REAL INPUT VARIABLE REPRESENTING THE TOTAL PROPAGATION
C DISTANCE OF THE ELECTRIC FIELD.
C
C DELX - REAL VARIABLE FOR THE PROPAGATION DISTANCE TO EACH SLAB.
C

C NUMSCR - INTEGER INPUT VARIABLE USED IN NEAR-FIELD FRESNEL
C PROPAGATION. THIS VARIABLE CORRESPONDS THE THE NUMBER
C OF EQUALLY SPACED SLABS WHICH MAKE UP THE TOTAL DISTANCE.
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C
C WVL - FIXED VALUE FOR THE WAVELENGTH.
C
C ICNT - INTEGER VALUE WHICH DETERMINES WHETHER OR NOT THE FIELD HAS
C PROPAGATED THE TOTAL DISTANCE Z. USED IN NEAR-FIELD
C FRESNEL PROPAGATION.
C
C PI - VALUE OF PI.
C
0 TPI - TWICE THE VALUE OF PI.
C
C MODE - REAL VALUE WHICH DETERMINES THE FORM OF PROPAGATION.
C
C SIGN - REAL VALUE EITHER 1.0 OR -1.0 WHICH DETERMINES WHETHER THE
C FFT IS DIRECT OR INDIRECT. IT ALSO DETERMINES WHETHER
C NORMALIZATION OCCURS.
C
C FLDM - MAXIMUM VALUE IN THE PERTURBED MCF ARRAY.
C
C FMAX - MAXIMUM VALUE IN THE PERTURBED ELECTRIC FIELD ARRAY.
C
C GRAPHICS:
C
C THE FOLLOWING VARIABLE NAMES ARE EITHER SPECIFIC TO THE SVS
C GRAPHICS ROUTINE OR USED TO MANIPULATE DATA FOR GRAPHING:
C
C NDEX, IREG, ANS, GETC, IUNITP. IUNITV, ISYMB, ITNO, MON, NPRIN,
C 1IODE, ONE, TITLE, IX, IY, XMAX, ICOLOR, INCR, NTOT.
C

C
C

COMION /BLK1/ RE(256),RIM(256)
CO:TAION /BLK2/ FIELDR(256,256),FIELDI(256,256)
COMMON /BLK3/ P}{ASER(256,256),PHASEI(256,256)
DIMENSION NDEX(20),FIELDM(256,256),FMCF(256,256),FNORM(256,256)
DIMENSION FMAG( 130),DIST(130),FILL(256,256)
INTEGER*2 IREG(9)
DOUBLE PRECISION PI
DATA NDEX/15,15,7,7,8,8,14,14,5,5,4,4,2,2,3,3,1,1,0,0/
DATA RE/256*0.0/,RIM/256*0.0/
DATA FIAG/130*O0.0/,DIST/130*O.0/
CHARACTER*4 ONE
CHARACTER*21 TITLE
CHARACTER*2 ANSGETC
DATA TITLE/'THE SEED VALUE IS= '/
DATA ONE/' '/
DATA IUNITP/10/,IUNITV/20/
OPEN(4,FILE='LN. DAT',STATUS='NEW')
ISYMB=22
ITNO=5
MON=18
PI=3.141592653589792
NPRIN=O
MlODE=O
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999 CONTINUE
C

C THIS SECTION OF THE PROGRAM SETS UP THE INPUT PARAMETERS FOR THE
C SIMULATION.
C

WRITE(*,*)'

WRITE( *,*-)' HELLO... LET US BEGIN THIS SIMULATION BY ENTERING
WRITE(*,*)'SEVERAL INPUT PARAMETER VALUES.'
WRITE(*,*)'
WRITE(*,*)'THE VARIABLE WHICH DIMENSIONS THE ARRAY SIZE IS THE'
WRITE(*,*)'FIRST VALUE TO ENTER. INPUT THE INTEGER VALUE.'
READ(*,*)NR
WRITE(*,*)I
WRITE(*,*)'THE SECOND VARIABLE OF INTEREST IS "NSIZE". THIS'
WRITE(*,*)'VARIABLE DIMENSIONS THE SIZE OF THE PLANAR ELECTRIC'
WRITE(*,*)'FIELD. SELECT ONE OF THE FOLLOWING.'
WRITE(*,*)' I. FOR 100 X 100'
WRITE(*,*)' 2. FOR 64 X 64'
WRITE(*,*) 3. FOR 32 X 32'
WRI TE(*,) 4. FOR 16 X 16'
WRITE(*,*) 5. FOR S X 8'
WRITE(",*) 6. FOR 4 X 4'
WRITE(,) 7. FOR 2 X 2'
WRITE(.)
READ' ,*)ISIZE
IP(ISIZE. EQ. 1) THEN
NSIZE=50
DEL'MSH=. 0031
INCR=3

ELSEIF(ISIZE. EQ. 2) THEN
NS IE=32
DEL>IS}H=. 0049
INCR=1

ELSEIF(ISIZE. EQ. 3) THEN
NSIZE=I6
DEL S=.0098

NCR=2
ELSEF(ISIZE. EQ. 4) THEN
NSIZE=s
D::LLSH=. 019531
INCR=2

ELSEIF(ISIZE. EQ. 5) THEN
NSIZE=4
DELMS-=. 039063
INCR=1

ELSEIF(ISIZE. EQ.6) THEN
NSIZE=2
DELS]=. 0781
INCR=I

ELSE
NSIZE=1
DELM S}l=. 1563
INCR=I

ENDIF
WRITE(*,*)'
WRIi'L( ,* 'ANOTHER INPUT PARAMETER IS THE SEED VALUE OF THE'
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WRITE(*,*)'RANDOM NUMBER GENERATOR. INPUT THE SEED VALUE OF +1.0'
WRITE(*,*)'OR -1.0'
READ(*,n)SEED
WRITE(*,*)'
WRITE(*,*)'FINALLY INPUT AN INTEGER OF VALUE I FOR TURBULENCE, OR'
WRITE(*,*)'O FOR NO TURBULENCE.'
READ(*,*)NYES
IF(NYES. EQ.1) THEN
WRITE(*,*)'

WRITE(*,*)'INPUT THE VALUE OF FILTER'
READ(-*,*)FILTER
ENDIF
WRITE(*,*)'

WRITE(*,*)'INPUT THE VALUE FOR CN2'
READ(*,*)CN2
WRITE(*,*)'

c WRITE(*,*)'INPUT THE RECEIVING FIELD SIZE IN METERS'
c READ(*,*)DREC

WRITE(*,*)'
WRITE(* ,*)'INPUT THE TOTAL PROPAGATION DISTANCE IN METERS'
READ,(*,*)z
WRITE(*,*)'

c WRITE(*,1)'INPUT THE NUMBER OF SCREENS TO BE USED EITHER FOR'
WRITE(*,*)'FRESNEL OR RAUNHOFER
READ(*,*)NUMSCR
IF(SEED. GE. 1. 0) THEN

ONE(l: 2)='+i'
ELSE
ONE( 1: 2)='-'

ENDIF
TITLE(20: 21 =ONE( 1:2)
N2=NR/2
WVL=.SE-6
>=ALOG(REAL(NR))/ALOG(2.)
DTR<NS=. 3125
ICNT=0

C
C THE FOLLOWING STATEMENT DETERMINES WHICH FORM OF FRESNEL IS TO BE
C USED
C
c MODE=INT((2*DTRNS*DREC)/(WVL*Z))
C
C THE FOLLOWING SUBROUTINE CALLED MCF DETERMINES THE AUTOCORRELATION
C OF THE APERTURE WHICH IS TO BE USED IN DETERMINING THE ATMOSPHERIC
C COHERENCE LENGTH.
C

CALL MCF(FNORM,NR,M,PI,NSIZE,N2,DELMSh)
C
C THIS SECTION CREATES THE PLANAR ELECTRIC FIELD
C

DO 40 I=I,NR
DO 40 J=I.NR

FIELDR(I,J)=0.0
FIELDI(I,J)=0.0

40 CONTINUE
DO 41 I=N2-NSkZE+l,N2+NSIZE
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DO 41 J=N2-NSIZE+1,N2+NSIZE
FIELDR(I,J)=1.0

41 CONTINUE
C
C THIS SECTION DETERMINES THE SLAB THICKNESS(ES) FOR WHICH THE
C ELECTRIC FIELD IS PROPAGATED THROUGH.THIS IS VALID FOR BOTH
C FORMS OF PROPAGATION.
C
C IF(NR. LE. MODE) THEN
C DELX=Z/NUMSCR
C ELSE

DELX=Z
C
C THE FOLLOWING SUBROUTINE PLACES A CURVATURE ON THE WAVEFRONT TO BE
C USED FOR THE CONVOLUTION FORM OF FRESNEL PROPAGATION.
C
C CALL QUADI(NR,PI,DELMSH,DX,DY,WVL,DELX)
C ENDIF
C
1000 CONTINUE

C
C THIS SECTION CALLS OUT GAUSSIAN RANDOM NUMBERS FOR THE REAL AND
C IMAGINARY PHASE ARRAYS.
C

CALL GGAUS(NR,SEED)

C
C THIS BEGINS THE FILTERING PROCESS OF THE PHASE SCREEN
C

CALL FLTR(NR,DELMSH,CN2,DELX,WVL,FILTER)
C
C HERE THE INDIRECT TRANSFORM IS BEING APPLIED TO THE FILTERED
C PHASE SCREENS.
C

CALL IFTSCR(NR,M,DELMSH)
C
C THE FOLLOW1ING ARRAYS USED IN THE FFT ROUTINES ARE ZEROED OUT TO
C ENSURE THAT UNWANTED VALUES ARE NOT LEFT IN THE ARRAYS.
C

DO 990 I=1,NR
RE(I)=0.0
RIM(I)=0. 0

990 CONTINUE
C
C THIS SECTION DOES THE ALGEBRA NEEDED TO MESH THE PHASE SCREEN
C TOGETHER WITH THE ELECTRIC FIELD
C

DO 50 I=I,NR
DO 50 J=I,NR
XA=COS(PHASER(I,J))*FIELDR(I,J)
XB=COS(PHASER(I,J))*FIELDI(I,J)
XC=SIN(PHASER(I,J))*FIELDR(I,J)
XD=SIN(PHASER(I,J))*FIELDI(I,J)
FIELDR(I,J)=XA-XD
FIELDI(I,J)=XB+XC

50 CONTINUE
C
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C HERE THE FAST FOURIER TRANSFORM IS BEING APPLIED TO THE PERTURBED
C ELECTRIC FIELD. FOR A DIRECT TRANSFORM SIGN=-1.0, AND INDIRECT
C TRANSFORM SIGN=+1.0.
C

SIGN=-1.0
CALL DFTIFT(NR,M,SIGN,DELMSH)

C
DO 141 I=I,NR
DO 141 J=1,NR
FIELDR(I,J)=FIELDR(I,J)/(NR*DELMSH)
FIELDI(IJ)FIELDI(IJ)/(NR*DELMSH)

141 CONTINUE
C
C
C THIS PORTION OF THE IF STATEMENT CORRESPONDS TO THE IMPLEMENTATION
C OF THE TRANSFER FUNCTION FORM OF FRESNEL PROPAGATION. THE
C SUBROUTINE CALLED TRNSFER APPLIES A QUADRATIC TO THE FIELD.
C
C IF(NSR.LE.,MODE) THEN
C CALL TRNSFR(NRPDXDYWVLDELXDTRNS)
C ICNT=ICNT+1
C SIGN=+LI.O
C GALL DFTIFT(NRMSIGNDELSH)
C GO TO 888
C ELSE
C
C THE SUBROUTINE CALLED QUAD2 PUTS TE DIFFRACTION PATTERN IN REAL
C SPACE COORDINATES.
C
C CALL QUAD2(NRPIDXDYWVLDELX)
C ENDIF
C
C 888 CONTINUE
C
C
C THIS DO LOOP DETERM'INES THE POWER SPECTRAL DENSITY AND SETS IT UP
C FOR A7 FFT TO DETERAINE THE MCF.
C

DO 152 I=1,NR
DO 132 .J=ILNR
FMCF(I,J)=FIELDR( I ,J)*2+FELDI(I ,J)*2
FILL(IJ)=O. 0

152 CONTINUE
C
C ONCE AGAIN THE ARRAYS ARE CLEARED OF STRAY VALUES
C

DO 910 01,NR
RE(I)=O.0
RIM(U)=O. 0

910 CONTINUE
C
C THE INVERSE EFT IS APPLIED TO THE POWER SPECTRAL DENSITY
C

SIGN+ I0,
DO 901 I=1,NR
DO 911 J=I,NR
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RE(J)=FMCF(I,J)
RIM(J)=FILL(I,J)

911 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 921 J=1,NR
FMCF( I ,J)=RE(J)
FILL(I,J)=RIM(J)

921 CONTINUE
901 CONTINUE

DO 931 J=1,NR
DO 941 I=1,NR
RE(I)=FMCF(I,J)
RIM(I)=FILL(I,J)

941 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 951 I=1,NR
FMCF(I,J)=RE(I)
FILL(I,J)=RIM(I)

951 CONTINUE
931 CONTINUE

C
C
C THIS SECTION DETERMINES THE MAXIMUM VALUE AND NORMALIZES THE MCF
C

FLDM=0. 0

DO 89 I=1,NR
DO 89 J=1,NR

XMG=FNCF( I, J)
IFC(1G. GT. FLDM) THEN
FLDN=X'IG

ENDIF
89 CONTINUE

C WRITE(*,*) FLDM
C PAUSE
C
C THE MCF IS NORMALIZED SO THE MAX VALUE IS 1.0
C

DO 29 I=,N2
DO 29 J=1,N2
FMCF(I,J)=FMCF(I,J)/FLDM

29 CONTINUE
C
C THE ATMOSPHERIC MCF IS DETERMINED BY DIVIDING OUT THE APERTURE
C FUNCTION FROI THE PERTURBED ELECTRIC FIELD MCF.
C

DO 91 1=I,N2
DO 91 J=I,N2
FMCF(I , J)=FMCF(I,J)/FNORM(I,J)

91 CONTINUE
C
C
C DO 87 1=1,1
C DO 87 J=1,20
C WRITE(*,'*)FMCF(I,J)
C 87 CONTINUE
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PAUSE
C
C
C THIS SECTION SETS UP THE ARRAYS TO PLOT THE 2-D MCF
C

NTOT=2*NSI ZE
DO 827 1=1,1
DO 827 J=1,NTOT
DIST(J)=J
FMAG(J)=FMCF( I,J)

827 CONTINUE
C
C DO 83 J=1,NTOT
C WRITE(*,*)FMAG(J) ,DIST(J)
C 83 CONTINUE
C PAUSE
C
C THE FOLLOW'ING SUBROUTINES ARE FOR THE GRAPHICS PACKAGE
C THE ATMOSPHERIC MCF IS BEING PLOTTED AT THIS POINT
C

CALL V'SINIT(18,8. ,10. ,O,'MCF1.PLT',IUNITV,IVID,5)
CALL ORIGIN(.5,1.5,O)
CALL S'UATE(VMYAG,5. ,NTOT,l)
CALL AXIS(O. ,O. ,'MICF',O,1,1,5. ,90. ,FNAG(NTOT+1),FMAG(NTOT+2),.1,1)
CALL SCALE(D1ST,5. ,NTOT,l)
CALL AXIS(O. ,O. ,' ' ,O,-1,-1,5. ,O. ,DIST(NTOT+1),DIST(NTOT+2),.1,1)
CALL LINES(DIST,FMIAG,NTOT,1,-l,ISYM1B,. 1)
CLOSE( IUNITV)

C CALL INT86(ITNO,IREG)
CALL MSG(O. ,O.,.15, 'PRESS ANY KEY TO CONTINUE',O. ,O,1)
ANS=GETC()
CALL GAODE( IVID)

C
C
C THE MAGNITUDE OF THE FFT'D ELECTRIC FIELD IS CALCULATED IN ORDER
C TO PLOT THE OUTPUT.
C
C

FMAX=O. 0
DO 80 I=1,NR
DO 80 J=1,NR
FIELDl( I ,J)=SQRT(FIELDR( I,J)**2+FIELDI( I,J)*t'2)
X=FIELDM( I,J)
IF(X. GT. FMAX) THEN
FMAX=X

END IF
80 CONTINUE

C
C THIS SECTION BEGINS THE CALLING SEQUENCE FOR PLOTTING
C

CALL VSINIT(MION,10. ,8. ,O,'DITHER.PLT',IUNITV,IVID,5)
DO 100 I=1,N2
DO 100 J=1 ,N2
IX=J~rINCR
IY=IINCR
XYAXALOG1(FIELDt( I ,J)/FMIAX)



INDEX=8*ABS( X AX)+l
IF(INDEX. GE. 21) THEN
I COLORO0
ELSE
ICOLOR=NDEX( INDEX)
ENDIF

CALL PIXEL(IX,IY,ICOLOR)
100 CONTINUE

CALL MSG(O. ,1.,. 15,TITLE,O. ,O,O)
CLOSE( IUNITV)

C CALL 1NT86(lTNO,IREG)
CALL MSG(O. ,0.,. 15,'PRESS ANY KEY TO CONTINUE' ,O. ,O,O)
ANS=GETC()
CALL GMODE(IVID)

C
C THIS IF STATEMENT QUES THE PROGRAM TO START OVER AGAIN IF
C FRAUNHOFER OR THE CONVOLUTION FORM OF FRESNEL ARE USED
C

IF(NR. GT. MODE) THEN
GO TO 999
ENDIF

C
C THIS IF STATEMENT QUES THE PROGRAM TO FULLY COMPLETE PROPAGATION
C THROUGH ALL THE SLABS IN THE TRANSFER FUNCTION FORM OF FRESENL,
C

IF( ICYT. NE. NUNS CR) THEN
GO TO 1000
END IF
GO TO 999
END

C
SUBROUTINE QUAD1(NR,PI,DELMSH,DX,DY,WVL,DELX)
COMWO /BLK2/ FIELDR(256,256),FIELDI(256,256)
DX=DELMSH
DY=DEL>ISH
MID=(NR/2)+1
DO 273 I=1,NR

DO 273 J=1,NR

TH-ETA=PI*(((X*X)+(Y*Y))/(WVL*cDELX))
XX=FIELDR( I,J)*COS(THETA)
YY=FIELDR(I,J)*SIN(TH-ETA)
ZZ=FIELDI(I J)*COS(THETA)
WW=FIELDI(IJ)*SIN(THETA)
FIELDR(IJ)=X\\ WW
FIELDI(IJ)=YY+ZZ

273 CONTINUE
RETURN
END

C
SUBROUTINE QUAD2(NR,PI ,DX,DY,WVLDELX)
COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DX2=DX*WVL*DELX
DY2=DY*;;VL*DELX
MID=NR/2+1



DO 274 I=1,NR
Y=( I -MIID)*DY2

Do 274 J=1,NR
X=(J-MIID)*DX2
PHI=PI*( ((X*X)+(Y*Y) )/(WVL*DELX))
CX=FIELDR( I,J)'*COS(PHI)
CY=FIELDR( I,J)*SIN(PHI)
CZ=FIELDI( I, J)'COS(PHI)
CW=FIELDI( I,J)'*SIN( PHI)
CBR=CX-CW
CBI=CY+CZ
FIELDR(I ,J)=(CBI/(WVL*DELX))
FIELDI( I,J)- 1. *(CBR/(WVL*"DELX))

274 CONTINUE
RETURN
END

C
SUBROUTINE TRNSFR(NR,PI,DX,DY,WVL,DELX,DTRNS)
COMMON /BLK2/ FIELDR(256,256) ,FIELDI(256,256)
DX=DTRNS /NR
DY=DTRNS/NR
MID=NR/2+1
DO 275 I1,NR

FY=( I-MID)*DY
DO 275 J1",NR

FEE=- 1. ,PlIAVLDELX-r( (FX'FX)+( FY*FY))
GX=FIELDR( 1 J)*COS(FEE)
GY=lIELDR. I,J)*SIN( FEE)
GZ=FIELDI( I,J)*eCOS(FEE)
GW=FIELDI( I,J)*SIN(FEE)
FIELDR( I,J)=GX-GW
FIELDI (I ,J)=GY+GZ

275 CON'TNC-E
RETURN
EN -D

C
C
C

SUBROUTINE FLTR(NR,DELMISH,CN2,DELX,WVL,FILTER)
C NOTE: DELMSH,"NR IS THE LARGEST APERTURE SIZE

CCNN'ON /BLK3/ PHlASER(256,2156),PHASEI(256,256)
PI=3. 141592-653589792
POWER=-11. /6.
TP=2. *PI
N2=NR/2
NPIVOT=N2+1
LAST=NPIVOT+ 1
DLKAPA=(TPI/(NR*DELMSH) )**POWER
FACTOR=SQRT( (TPI*3y*. 033*CN2*DELX/(WVL*,*2))
FUDGE=DLKAPAl'FACTOR
DO 100 I=1,NPIVOT
EYE=REAL(I)
EYE2=EYE,,'EYE
DO 100 J=1,NR
IF(J. LE. NPIVOT) THEN



WHY=REAL( J)
ELSE
WH-Y=REAL( NR-J+2)

END IF
XKAPPA=SQRT( EYE 2+WHY*WHY)
AKAPPA=XKAPPA**FILTER
PHASER( I,J)=PHASER( 1,J)*FUDGE*AKAPPA
PHASEI( I,J)=PHASEI( I,J)*FUDGE*AKAPPA

100 CONTINUE
DO 110 I=LAST, NR
EYE=REAL( NR- 1+2)
EYE 2EYE*EYE
DO 110 J=1,NR

IF(J. LE. NPIVOT) THEN
WHY=REAL( J)
ELSE
WHY=REAL(NR-J+2)

ENDIF
XKAPPA=SQRT( EYE 2+WHY*WHY)
AKAPPA=XKAPPA**FI LTER
PHfASER( I,J)=PHASER( I,J)*FUDCE*AKAPPA
PHASEI( I,J)=PHASEI( I,J)*FUDGE*AKAPPA

110 CONTINUE
C

PHASER(1,1)O. 0
PHASEI(l,1)O. 0

C
C NOTE: . 0344l=TPI**11. /6. TO TRANSFORM FROM KAPPA TO FREQ SPACE.

DO 11 1=1,NR
DO 11 J1I,NR
PHA SER(I,J)=PHASER(I,J)*. 03441
PHASEj(I,J)=PHASEI(I,J) . 03441

11 CONTINUE
RETURN
END

C
SUBROUTINE IFTSCR( NR ,N, DELMS{)
CO'lMN /BLK1/ RE(256) ,RI1( 256)
CO>1l~lON /BLK3/ PHASER(256,256),PH-ASEI(256,256)
P1=3. 141592633589792
TPI=2. *PI
ST 'N=-.0
DO 20 1=1,NR

DO 21 J=1,NR
RE(J)=PHASER(I ,J)
RIM(J)=PHASEI( I,J)

21 CONTINUE
CALL FFT( N,SIGN, DELMSH)
DO 22 J=1,NR

PHASER( I,J)=RE(J)
PHASEI( I,J)=RIM(J)

22 CONTINUE
20 CONTINUE

DO 30 J=1,NR
DO 31 11I,NR

RE( I )PIIASER( I,J)
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RIM(I)=PHASEI(I ,J)
31 CONTINUE

CALL FFT(I1,SIGN,D)ELMSH)
DO 32 I=1,NR

PHASER( I,J)=RE( I)
PHASEI( I,J)=RIM( I)

32 CONTINUE
30 CONTINUE

RETURN
END

C
SUBROUTINE DFTIFT(NR,M, SIGN,DELMSH)
COMMON /BLK1/ RE(256),RIM(256)
COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DO 60 I=1,NR

DO 61 J=1,NR
RE(J)=FIELDR( I,J)
RIM(J)=FIELDI( I,J)

61 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 62 J=1,NR
FIELDR( I,J)=RE(J)
FIELDI( I,J)=RIM(J)

62 CONTINUE
60 CONTINUE

DO 7 0 TJ=1,NR

DO 71 I=1,NR
RE( I)=FIELDR( I,J)
RIY,( I)=FIELDI( I,J)

71 CONTITNUE
CALL FFT(M~,SIGN ,DELMSEl)
DO 72 I=1.NR
FTELDF( I,J)=RE(I
FIELDI( I ,j RINM I

72 CONTINUE
70 CONTINICE

RETURN
END

C
C

SUBROUTI NE FFT( M,SIGN, DELMSH)
CO>INON /BLK1/ RE(256),RIM(256)
P1=3. 141592653389 792",SIGN

N1=N-1
J= 1
DO 200 I=1,Nl
IF(I.LT.J) THEN
T=RE(J)
RE(CJ)=RE(CI)
RE (I) =T
T=RIM( J)

* RIM(J)=RIM(I)
RlI( I)=T

END IF
K=N/



DO 201 WHILE(K. LT. J)
J=J-K

201 CONTINUE
J=J+K

200 CONTINUE
LE 1
DO 202 L=1,M

LE1=LE
LE-LE+LE
URE= 1.

ANG=P I /LE 1
1WRE=COS (ANG)
WIM=SIN( ANG)

DO 203 J=1,LE1
DO 204 I=J,N,LE

IP=I+LE1
TRE=RE( IP)*URE-RIM( IP)*UIM
TD'i=RE( I P) ".UiM+RIM( I P)*URE
RE(IP)=RE(I)-TRE
RIM( IP)=RIN( I) -TIM
RE( I)=RE( I)+TRE
RII( I)=RII( I)+TIM

204 CONTINUE
T=URE"WRE-UIM*WIM
U I M=7URE- -I M±4U I MWRE
U:RE=T

203 CONTINUE
202 CONTINU:E

IF(SIGN. GT. 0. 0) THEN
I-TS1. 0/(N"IDELM-SH)
DO 205 I=1,N
RE(I)=REEJ)P
RIl( I )=R1l( I )-,PTS

205 CONTINUE
ENF IF
RETURN
END

C
C

SUBROUTINE GGAUS (NR,SEED)
COMIMON /BLK3/ PHASER(256,256),PHASEI(256,256)
DO 300 I=1,NR
DO 300 J=1,NR

301 V1=2. *RAN(SEED)-l
V2=2.*'RAN( SEED) -1
S=V1*Vl+V2*V2
IF(S. GE. 1. 0) GO TO 301
SCALE=SQRT( -2. *ALOG(S)/S)
X 1Vl 1.SCALE

C X2=V2*SCALE
PHASER( I,J)=Xl
PHASEI( I,J)0O. 0

300 CONTINUE
RETURN



END
C

SUBROUTINE MCF(FNORM,NR,M,PI,NSIZE,N2,DELM 'SH)
COMMON /BLKl/ RE(256),RIM(256)
COMMON /BLK2/ FIELDR(256,256),FIELDI(256,256)
DIMENSION FNORM(256,256)

C
C THIS SECTION CREATES THE PLANAR ELECTRIC FIELD
C

DO 39 I=1,NR
DO 39 J=1,NR
FIELDR(I,J)=O. 0
FIELDI(I,J)=O. 0

39 CONTINUE
C

DO 45 I=N2-NSIZE+1,N2+NSIZE
DO 45 J=N2-NSIZE+1,N2+NSIZE

FIELDR(I,J)=1. 0
45 CONTINUE

C
C

SIGN=-1. 0
CALL D)FTIFT(NR,1, SIGN,DELMSH)

C
C

DO 80 I=1)NR
DO 80 J=1,NR
FNORM'(I,J)=FIELDR(I,J)**e2+FIELDI(I,J)**2

80 CONTINUE
C

DOJ 122 !=!,NR
DO 123 J=1 ,NR
FIELDI(I,J)=O. 0

123 CONTINU:E
C

SlGN=f1. 0
DO 90 Th1,NR
DO 91 J=1,NR
RE(J)=FN0KN( I,J)
RIII(J)=FIELDI( I,J)

91 CONTINUE
CALL FFT(M,SIGN,DELMSH)
DO 92 J=1,NR
FNORM( I ,J)=RE(J)
FIELDI( I,J)=RIM(J)

92 CONTINUE
90 CONTINUE

DO 93 J1I,NR
DO 94 I=1,NR
RE( I)=FNORI( I,J)
RIM( I )FIELDI( I,J)

94 CONTINUE
CALL FFT(M,SIGN ,DELMSH)
DO 95 I=1,NR
FNORM( I,J)IRE( I)
FIETDI( I,J)=RIM( I)



95 CONTINUE
93 CONTINUE

C
C

FLDY,,=O. 0
DO 88 1=1,NR
DO 88 J=1,NR
XMG=FNORM( I,J)
IF(XMG. GT. FLDM) THEN
FLDM=XMG

ENDIF
88 CONTINUE

DO 89 1=1,N2
DO 89 J=1,N2
FNORN( I, J)=FNORM( I,J) /FLDM

89 CONTINUE
C

RETURN
END
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